\(\int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [144]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 237 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {4 a^3 (17 A+21 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^3 (11 A+13 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^3 (11 A+13 B) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (17 A+21 B) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)} \]

[Out]

-4/15*a^3*(17*A+21*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+
4/21*a^3*(11*A+13*B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+4
/105*a^3*(23*A+24*B)*sin(d*x+c)/d/cos(d*x+c)^(5/2)+4/21*a^3*(11*A+13*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/9*a*A*
(a+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(9/2)+2/63*(13*A+9*B)*(a^3+a^3*cos(d*x+c))*sin(d*x+c)/d/cos(d*x+c)^
(7/2)+4/15*a^3*(17*A+21*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3054, 3047, 3100, 2827, 2716, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {4 a^3 (11 A+13 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {4 a^3 (17 A+21 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^3 (11 A+13 B) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 (13 A+9 B) \sin (c+d x) \left (a^3 \cos (c+d x)+a^3\right )}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4 a^3 (17 A+21 B) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) (a \cos (c+d x)+a)^2}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

(-4*a^3*(17*A + 21*B)*EllipticE[(c + d*x)/2, 2])/(15*d) + (4*a^3*(11*A + 13*B)*EllipticF[(c + d*x)/2, 2])/(21*
d) + (4*a^3*(23*A + 24*B)*Sin[c + d*x])/(105*d*Cos[c + d*x]^(5/2)) + (4*a^3*(11*A + 13*B)*Sin[c + d*x])/(21*d*
Cos[c + d*x]^(3/2)) + (4*a^3*(17*A + 21*B)*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]) + (2*a*A*(a + a*Cos[c + d*x
])^2*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2)) + (2*(13*A + 9*B)*(a^3 + a^3*Cos[c + d*x])*Sin[c + d*x])/(63*d*Cos
[c + d*x]^(7/2))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2}{9} \int \frac {(a+a \cos (c+d x))^2 \left (\frac {1}{2} a (13 A+9 B)+\frac {3}{2} a (A+3 B) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx \\ & = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4}{63} \int \frac {(a+a \cos (c+d x)) \left (\frac {3}{2} a^2 (23 A+24 B)+\frac {15}{2} a^2 (2 A+3 B) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4}{63} \int \frac {\frac {3}{2} a^3 (23 A+24 B)+\left (\frac {15}{2} a^3 (2 A+3 B)+\frac {3}{2} a^3 (23 A+24 B)\right ) \cos (c+d x)+\frac {15}{2} a^3 (2 A+3 B) \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx \\ & = \frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {8}{315} \int \frac {\frac {45}{4} a^3 (11 A+13 B)+\frac {21}{4} a^3 (17 A+21 B) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (2 a^3 (11 A+13 B)\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx+\frac {1}{15} \left (2 a^3 (17 A+21 B)\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^3 (11 A+13 B) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (17 A+21 B) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (2 a^3 (11 A+13 B)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{15} \left (2 a^3 (17 A+21 B)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {4 a^3 (17 A+21 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^3 (11 A+13 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {4 a^3 (23 A+24 B) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^3 (11 A+13 B) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^3 (17 A+21 B) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 a A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (13 A+9 B) \left (a^3+a^3 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.71 (sec) , antiderivative size = 967, normalized size of antiderivative = 4.08 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3 \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {(17 A+21 B) \csc (c) \sec (c)}{30 d}+\frac {A \sec (c) \sec ^5(c+d x) \sin (d x)}{36 d}+\frac {\sec (c) \sec ^4(c+d x) (7 A \sin (c)+27 A \sin (d x)+9 B \sin (d x))}{252 d}+\frac {\sec (c) \sec (c+d x) (55 A \sin (c)+65 B \sin (c)+119 A \sin (d x)+147 B \sin (d x))}{210 d}+\frac {\sec (c) \sec ^3(c+d x) (135 A \sin (c)+45 B \sin (c)+238 A \sin (d x)+189 B \sin (d x))}{1260 d}+\frac {\sec (c) \sec ^2(c+d x) (238 A \sin (c)+189 B \sin (c)+330 A \sin (d x)+390 B \sin (d x))}{1260 d}\right )-\frac {11 A (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}-\frac {13 B (a+a \cos (c+d x))^3 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{42 d \sqrt {1+\cot ^2(c)}}+\frac {17 A (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{60 d}+\frac {7 B (a+a \cos (c+d x))^3 \csc (c) \sec ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{20 d} \]

[In]

Integrate[((a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(11/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3*Sec[c/2 + (d*x)/2]^6*(((17*A + 21*B)*Csc[c]*Sec[c])/(30*d) + (A*Sec[
c]*Sec[c + d*x]^5*Sin[d*x])/(36*d) + (Sec[c]*Sec[c + d*x]^4*(7*A*Sin[c] + 27*A*Sin[d*x] + 9*B*Sin[d*x]))/(252*
d) + (Sec[c]*Sec[c + d*x]*(55*A*Sin[c] + 65*B*Sin[c] + 119*A*Sin[d*x] + 147*B*Sin[d*x]))/(210*d) + (Sec[c]*Sec
[c + d*x]^3*(135*A*Sin[c] + 45*B*Sin[c] + 238*A*Sin[d*x] + 189*B*Sin[d*x]))/(1260*d) + (Sec[c]*Sec[c + d*x]^2*
(238*A*Sin[c] + 189*B*Sin[c] + 330*A*Sin[d*x] + 390*B*Sin[d*x]))/(1260*d)) - (11*A*(a + a*Cos[c + d*x])^3*Csc[
c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot
[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
+ Sin[d*x - ArcTan[Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) - (13*B*(a + a*Cos[c + d*x])^3*Csc[c]*HypergeometricPF
Q[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^6*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[
d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[
Cot[c]]]])/(42*d*Sqrt[1 + Cot[c]^2]) + (17*A*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((Hypergeometr
icPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x +
ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]
*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[T
an[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))
/(60*d) + (7*B*(a + a*Cos[c + d*x])^3*Csc[c]*Sec[c/2 + (d*x)/2]^6*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos
[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[
d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d
*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(C
os[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(20*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1150\) vs. \(2(265)=530\).

Time = 18.18 (sec) , antiderivative size = 1151, normalized size of antiderivative = 4.86

method result size
default \(\text {Expression too large to display}\) \(1151\)
parts \(\text {Expression too large to display}\) \(1421\)

[In]

int((a+cos(d*x+c)*a)^3*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

-16*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(1/8*B/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1
/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+1/8*A*(-1/14
4*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^5-7/180*c
os(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-14/15*sin(
1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+7/15*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))-7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2))))+(1/8*B+3/8*A)*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos
(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2
*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+1/5*(3/8*A+3/8*B)/(8*sin(1/2*d*x+1/2*c)
^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1
/2*c)^6-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*
d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2
)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+(1/8*A+3/8*B)*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1
/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(
1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.19 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (11 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (11 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (17 \, A + 21 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (17 \, A + 21 \, B\right )} a^{3} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (42 \, {\left (17 \, A + 21 \, B\right )} a^{3} \cos \left (d x + c\right )^{4} + 30 \, {\left (11 \, A + 13 \, B\right )} a^{3} \cos \left (d x + c\right )^{3} + 7 \, {\left (34 \, A + 27 \, B\right )} a^{3} \cos \left (d x + c\right )^{2} + 45 \, {\left (3 \, A + B\right )} a^{3} \cos \left (d x + c\right ) + 35 \, A a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d \cos \left (d x + c\right )^{5}} \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(11*A + 13*B)*a^3*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)
) - 15*I*sqrt(2)*(11*A + 13*B)*a^3*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) +
21*I*sqrt(2)*(17*A + 21*B)*a^3*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) +
 I*sin(d*x + c))) - 21*I*sqrt(2)*(17*A + 21*B)*a^3*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-
4, 0, cos(d*x + c) - I*sin(d*x + c))) - (42*(17*A + 21*B)*a^3*cos(d*x + c)^4 + 30*(11*A + 13*B)*a^3*cos(d*x +
c)^3 + 7*(34*A + 27*B)*a^3*cos(d*x + c)^2 + 45*(3*A + B)*a^3*cos(d*x + c) + 35*A*a^3)*sqrt(cos(d*x + c))*sin(d
*x + c))/(d*cos(d*x + c)^5)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c))/cos(d*x+c)**(11/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(11/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{3}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c))/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^3/cos(d*x + c)^(11/2), x)

Mupad [B] (verification not implemented)

Time = 3.29 (sec) , antiderivative size = 552, normalized size of antiderivative = 2.33 \[ \int \frac {(a+a \cos (c+d x))^3 (A+B \cos (c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {2\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {19\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {9\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {25\,B\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {3\,B\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{21\,d}-\frac {8\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {7}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {34\,A\,a^3\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {5\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {27\,B\,a^3\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{135\,d}+\frac {8\,\left (\frac {3\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {B\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {5}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{21\,d}+\frac {2\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {136\,A\,a^3\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {39\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {5\,A\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {153\,B\,a^3\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {27\,B\,a^3\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{45\,d} \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^3)/cos(c + d*x)^(11/2),x)

[Out]

(2*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2)*((19*A*a^3*sin(c + d*x))/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^
2)^(1/2)) + (9*A*a^3*sin(c + d*x))/(cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) + (25*B*a^3*sin(c + d*x))/(
cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(1/2)) + (3*B*a^3*sin(c + d*x))/(cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^
2)^(1/2))))/(21*d) - (8*hypergeom([-1/4, 1/2], 7/4, cos(c + d*x)^2)*((34*A*a^3*sin(c + d*x))/(cos(c + d*x)^(1/
2)*(1 - cos(c + d*x)^2)^(1/2)) + (5*A*a^3*sin(c + d*x))/(cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (27*
B*a^3*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2))))/(135*d) + (8*((3*A*a^3*sin(c + d*x))/(co
s(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(1/2)) + (B*a^3*sin(c + d*x))/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(
1/2)))*hypergeom([-3/4, 1/2], 5/4, cos(c + d*x)^2))/(21*d) + (2*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2)*((
136*A*a^3*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2)) + (39*A*a^3*sin(c + d*x))/(cos(c + d*x
)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (5*A*a^3*sin(c + d*x))/(cos(c + d*x)^(9/2)*(1 - cos(c + d*x)^2)^(1/2)) +
 (153*B*a^3*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2)) + (27*B*a^3*sin(c + d*x))/(cos(c + d
*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2))))/(45*d)